
AD-A161 249 RADICAL COMPUTING III(U) MITRE CORP MCLEAN VA I/i
S AMAREL ET AL SEP 85 JSR-84-70i Fi9628-84-C-B61

UNCLASSIFIED F/G 9/2 UL

I fllfllfll...flfflf
I fflfflffllfllfllfllf
I fllfllfllfllfllfllfl
EIIIIEIIEEEEI
I.E

11111.2.0
1112 11 = .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

CV

I.ab been oppiOVOd

m,,se cand scc!, ; itb

Radical Computing H1II1

Saul Amarel
Curtis G. Callan, Jr

Roger F Dashen
Alvin M. Despain
Oscar S. Rothaus

September 1985

JSR-84-701

Approvd for public release; disrbution unlin-ifted E TI
ELEC1K

JASONNOV 1 81985
The MITRE Corporation

1820 Dolley Madison BoulevardA
Mc~ean, VA 22102A

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entwed) UNCLASSIFIED
READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

JSR-84-701

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

RADICAL COMPUTING III Technical

A 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Saul.Amarel, Curtis G. Callan, Jr., S. CONTRACT OR GRANT NUMBERs)

Roger F. Dashen, Alvin M. Despain, F19628-84-C-OOO1
Oscar S. Rothaus

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
The MITRE Corporation AREA & WORK UNIT NUMBERS

1820 Dolley Madison Blvd. 8503Z
McLean, VA 22102

Mcen A21212. REPORT DATE 13. NO. OF PAGES

11. CONTROLLING OFFICE NAME AND ADDRESS September 1985 65
DARPA 15. SECURITY CLAW. (of this report)

1400 Wilson Boulevard

Arlington, VA 22209 UNCLASSIFIED
14. MONITORING AGENCY NAME & ADDRESS (If diff. from Controlling Office)

15s. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary end identify by block number)

Molecular computing, advanced computing techniques, computing

20. AB$TRACT (Continue on reverse side if necessary and identify by block number)

4Va-ths-rep ort-/ we explore two topics suggested from the last study. The first
is Molecular Computing which may offer a technology t~hat co~uld rea'.ize some of the
ideas of reversible computing. The second topic is the Theory of Transformation of
Weak Methods into Strong Methods. This is a direct extension of our prior Source
Program Transformation work.

Since the goal of this and all our previous work is to identify potential new
development, the ideas discussed herein are quite speculative and should be considered
with some caution.

"" FORM

DD IAN 731473 UNCLASSIFIED

EDITION OF NOV 65 IS .OSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

%. %- %%'.%... , .","-',". "" " " " ". "-' ",,- - ,'-'" " " -' ' " " . '' .'. % ' '.' • " %

SECURITY CLASSIFICATION OF THIS PAGE (When Daea Entetad) UCASFE
1S. ICEY WORDS lConfIlnud

20 ABSTRACT (Continued!)

-- We limit our investigation to improvements in computer performance in the
execution of only difficult calculations. We will not seek higher performance for
problems easily managed by today's machines.-.

17''

FOR BAK
DD AN714 3UNLSSFE

EDTO FINV6 9 II.EESCRT LASFCTO FTI.AU we aeEtrd

%C

'.7'.7 'l K 77,1 A7I.

ACKNOWLEDGEMENT

The field of molecular computing has been developed, nurtured and supported by Forest Carter of

NRL. Dr. Carter worked with us on this study and provided research materials as well as his indi-

vidual insights into molecular computing. We are very grateful for his help in this study. We are

also grateful for discussions with Pepi Ross of SRI and James Clark Solinsky of mlI. We also

would like to acknowledge our colleagues in JASON for their contribution of inspiring discussions

and helpful criticism. In particular, the advice of Ken Case, Doug Eardley, Allen Peterson, and

John Vesecky is especially appreciated.

Accesion For

NTIS CRA&I
DTIC TAB
Ura .oui.ced
J .2tification

By.

Ava"Wfti~ Cods

Dfit jAvaI adjor

Radical Computing Mn

%' ~ ~ '

-. ~ - .a'..ajU '4 Aa,
1
%>X V .

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. History .. . 1

1.2. Scope .. 1

1.3. DIfficult Problems ... 1

1.4. Lim itations to High Perform ance .. 2

2. M OLECULAR COM PUTIN G .. 3

2.1. Introduction.. 3

2.2. Approaches .. 4

2.3. Construction Techniques .. 4

2.4. M achine Organization ... 5

2.4.1.F..ult........................ 5

2.4.2. Finite State Autom ata .. 5

2 2.4.3. Circulatlng Loops 6

2.5. M olecular Components .. 6

2.6. W ire .. 7

Radical Computing III

Radical Computing I.

2.6.1. Light Propagation ... 7

2.6.2. Solitons .. 8

2.6.3. Classic Conduction .. 8

-'

2.6.4. Super Conductors .. 9

2.7. Logical Switches .. 10

2.8. Flip-Flops10

2.9. Random Access Memory .. 10

2.10. Conclusions .. .11

3. TRANSFORM A TIO N OF M ETHODS ... 12

3.1. Introduction ... 12

3.2. Approach .. 12

3.3. JASO N-PRESS System .. 18

3.4. General Strength Im provem ent Schem e ... 19

3.5. Results ... 23

3.6. An Experim ent ... 26

3.7. Generating a Strong M ethod .. 27

3.7.1. M etrics,.......................,. 27

Z ,
, • ,%

• . ._ _.. J It -rrr . . Fr r - r..: r,. r, -.z..rz . : r,4 o- - -- - -a.
'' '

.., i. . - . ' i W .f m ~, Jl

Radical Computing III Iv

3.7.2. Selecting Lem m a ... 29

3.7.3. Structure Axiom s ... 29

"..

3.7.4. A rithm etic 30

3.7.5. Tidy Axioms................ 31

3.8. C onclusions .. . 33

4. R E F E R EN C E S ... 35

5. A PPE N DIX ES ... 37

%. %

.5.

-.,.. .--.-..... ,-... --.. .. -... "....-... ..-.- '..- ...-- -... ' .. ---., .' ." -.-2...
...,,..... -.. ... -.. , -... .. ,. ,,,-,,, ...-. .- , .,, I

1. INTRODUCTION

1.1. History

This is a report of the third JASON summer study of advanced computing techniques that

could lead to a radical improvement in computer performance. The purpose of these studies is to

identify trends, indicators, and potential techniques that might someday lead to such perfor-

mance. In the first study we investigated Residue Arithmetic and Symbolic Computingfl]. In the

second year we extended our study of symbolic computing into Source Program Transformation

and also investigated a new topic, Reversible Computing [2.

1.2. Scope

In this report, we explore two topics suggested from the last study. The first is Molecular

Computing which may offer a technology that could realize some of the ideas of reversible comput-

ing. The second topic is the Theory of Transformation of Weak Methods into Strong Methods.

This is a direct extension of our prior Source Program Transformation work.

Since the goal of this and all our previous work is to identify potential new developments,

the ideas discussed herein are quite speculative and should be considered with some caution.

We limit our investigation to improvements in computer performance in the execution of

only difficult calculations. We will not seek higher performance for problems easily managed by

today's machines.

1.3. Difficult Problems

In our view, difficult problem domains are characterized by these factors:

(1) Massive numerical calculations on large data structures.

(2) Search for an optimal (or near optimal) solution over a problem space.

(3) Symbolic calculations, tightly coupled to the numeric calculations and the search process.

.. e. J.

"?

Radical Computing M 2

Problems of this type demand a computer architecture with massive main memory, fast

digital circuits and special structure for supporting symbolic and search calculations.

1.4. Limitations to High Performance

The rate at which computers can execute is limited by the serial nature of today's computer '.'.1

programs, the strength (or efficiency) of the algorithms employed, and the physical size of the

components.

The joint problem of overcoming the serial nature of todays computing tasks and the

expressing, scheduling and executing parallel calculations is one of the great unsolved problems of

computer science. While it is very important, we have chosen not to address it in this particular

report. We note however, that the language Prolog, employed ir this report, has great potential

for parallel executionf31. j
We will discuss the theory of strength improvement in some detail. This is but one aspect

of the efficiency problem, however it is the most important for the problem domain we have in

mind.

The primary limitation to circuit speed is the finite speed of light (Maxwell's equations

and the need to dissipate heat. Smaller components generate less heat and therefore can be

packed closer together, decreasing the time it takes to propagate signals between themselves.

Smaller computers can, all other factors being equal, run proportionally faster than larger ones.

Today, the basic component of computers, the logical switch, is the transistor. If this switch

could be reduced in size from about 10-6 meters to a molecular scale of about 10-8 meters, a

speed-up of perhaps as much as 1000 times might be achievable. The possibility of this potential

speed-up motivated this study of molecular computing.

In modem electronic devices, response time scales linearly with size (See p. 33 of [4]1) However the main argument
for linear speedup is the simple argument that to first-order, transit time, across a device, is proportional to device site,
whatever the device.

I.%

%

Radical Computing I1 3

2. MOLECULAR COMPUTING

2.1. Introduction

Feynman[51 may have been the first to seriously consider the prospects of building comput-

ers on a molecular scale. He observed:

.... if computers had millions of times as many computing elements as they do now, they could
make such judgements (as in image recognition). But with the present size of components, these
computers would fill millions of rooms, cost impossible sums of money, and be too big to work an-
yhow. (In the 'smaller' computers) ... the wires should be ten or 100 atoms in diameter, and the
circuits should be a few thousand Angstroms across.

Thus, the basic idea of molecular computing is to radically reduce (i.e. to molecular scales) the

size of the components that make up today's computers. This means that the finest features,

today about 10 6 meters would be reduced to about 10- 9 meters. Thus switches, which today are

about 10 s meters across, might be reduced to the range of 10- 7 to 10- 8 meters. If such molecular

components could be developed, then perhaps up to 1018 bits/cm3 of storage and down to 10-12

seconds/gate of delay time might be achieved. Today, VLSI circuits achieve about 106 bits/cm3

and about 10
- 9 seconds/gate. It is, of course, the potential for this dramatic improvement in

storage density and circuit performance that motivates this study. The reader should be cau-

tioned however, that the ideas on molecular computing are speculative. There is very little exper-

imental or theoretical work to support most of the interesting ideas.

The modern ideas of Molecular Electronic Devices (MED) are the primary source of ideas for

molecular computers. These have been nurtured by Forrest L. Carter of the Navel Research

Laboratory since 1979. He has written extensively on the ideas[6,7,8,9, 10,11,7,12 He has also

sponsored several workshops on Molecular Electronic Devices.113,71. There is a wealth of

material available from these workshops and in the papers referenced by the workshop papers.

The reader is encouraged to examine these materials, although we will mention topics covered in

these materials only so far as they apply to the issues we discuss here.

- ~~~ - - -

Radical Computing I 4

2.2. Approaches

There are a number of approaches to molecular computing:

(1) Soliton propagation

(2) Conduction electrons

(3) Super conduction

(4) "Neuron-like", biological based elements

(5) Chemical reactions, similar to DNA etc. reactions.

We will discuss the first three possibilities. We will not consider the chemical or direct bio-

logical approaches, such as nerve conduction, because they are too slow I It is, however, possible

" .to employ biological assembly techniques for "fast" non-biological circuits.

2.3. Construction Techniques

Feynman[5, 14! also discussed possible construction techniques in his pioneering papers. In

particular he said[5

One possibility we might consider, since we have talked about writing by putting atoms down in a
certain arrangement, would be to evaporate metals or other materials in successive layers until we
have a block of exceedingly fine dimensions.
... The electrical equipment won't simply be scaled down; it has to be redesigned. But I can see
no reason why it can't be redesigned to work again.

4,.

We concur. There seem to be several possible avenues for molecular construction:

(1) Lithography

(2) Modular Chemistry

(3) Monolayer Films

1 The response time of nerve cells ('10-2 sec) is very slow compared to that of modern electronic circuits (-10 -0

seconds). Of course, if the fast circuits are not realizable, then the chemical and nerve conduction approaches should be
investigated. From where technology now stands, it appears that the fast circuit techniques are no more difficult than any
of the alternatives, and therefore become the choice for current investigation.

. - .

Radical Computing HI 5

(4) 'Self-Assembly' (Biological Techniques)

"" The reader is referred to the workshop papers mentioned above for details of all these tech-

niques. There are undoubtedly other possible approaches that might be applied if these techniques

will not suffice. The important point is that there seem to be a number of possible techniques

that could possibly be developed to assemble molecular computers.

2.4. Machine Organization

2.4.1. Fault Tolerance

The machine organization of molecular computers is likely to be very different from today's

computers due to the very high failure rates that must be expected for molecular components.

Cosmic rays for example, unstoppable with any practical shielding, will regularly destroy portions

of the molecular circuits. Manufacturing techniques are not now, nor are they ever, likely to be

perfect, and repairs will perhaps be impossible. Thus a great redundancy of molecular circuits

must be provided. Error (i.e. failure) detection and correction circuits will be needed at all levels

of molecular circuits and components. This is a reasonably well understood technical problem

and does not pose any unsurmountable difficulties. Since this is not a critical issue, we will not

discuss error and failure problems any further in this report.

2.4.2. Finite State Automata

In other respects, the organizational principles of today's computers should be applicable to

molecular computers. An exception might occur if, for some currently unseen reason, some

molecules are found that are very efficient finite state machines that can be organized into an

array of cellular automata. Array cellular automata, at least as they are understood today, are

inefficient organizations for doing calculations and would not be the first choice, all other factors

I being equal.

%

Radical Computing HI

2.4.3. Circulating Loops

The possibility of obtaining mass storage using molecular components is intriguing. Early

digital computers used circulating loop delay lines as both main and secondary (mass) stores.

These were acoustic delay lines of mercury, etc. Modern versions of "circulating loop stores" are

the magnetic bubble devices and the charge-coupled devices of modern electronics. There seems

to be a possibility that "circulating loop stores" on a molecular scale might be realizable. In par-

ticular, as discussed below, solitons can propagate down a single molecular chain at about the

speed of sound. Thus such a molecular chain might serve as a circulating loop store for a molecu-

lar mass memory. Since the propagation is a mechanical distortion, it is subject to all mechanical

(thermal and other) disturbances and so would need to take place in a cooled environment.

- 2.5. Molecular Components

There are a number of computer components that must be implemented in molecular form

if a molecular computer is to be realized.

(1) Wire

(2) Logical Switches
%''

(3) Flip-flops

(4) Random access memory

(5) Mass memory (serial access acceptable)

(6) Input interface, electronic to molecular level

(7) Output interface, molecular to electronic level

There are other components (such as optical image i/o) that, although desirable, are not

necessary. We will not consider these components.

% '.

Radical Computing M 7

2.6. WIre

The function of wire is to interconnect other components by transmitting signals over a dis-

tance, roughly the diameter of the molecular computer, (excluding the mass memory). Thus, it

will be necessary that this 'wire' reliably transmit signals over a distance of about 10-6 meters. If

electromagnetic phenomena is employed for signal transmission, this implies a time delay of about

10- x 10* or 10- 1s seconds, which is plenty fast compared to the speed of the proposed logic ele- 2
ments (10-12 seconds). Propagation phenomena, to be used for transmission of signals, should thus

*i have a propagation velocity comparable to the speed of light, (3 x 10' m/s).

Four mechanisms for signal transmission have been suggested in the literature. We have

not been able to think of any additional ones. The mechanisms are:

(1) Light propagation in channels, fibers, and free space.

(2) Soliton propagation in molecular chains.

(3) Classic (electrical) conduction in molecular chains.

(4) Super conduction (electrical) in molecular chains.

2.6.1. Light Propagation

The use of light as a signal transmission mechanism is an old idea. There seem to be

several molecular possibilities for generating and receiving the light signals. For example, Han-

son[15] discusses the prospects and problems of utilizing Frenkel excitons in several ways, one of

which is to generate controlled phosphorescence and launch a light signal into a thin film optical

wave guide.

The main difficulty with all light propagation systems is the inefficiency inherent in convert-

ing into and out of the light system. Hansen recognizes this problem but states

This problem can be circumvented by using light of the optimal wavelength and by having the
desired process occur on a faster time scale than the dissipative process.

a-,

0 Hansen recognizes that his general approach, which includes light propagation, is, in his words,

"extremely speculative". We agree. In fact it seems to us that light propagation is not the most

-. '
.. '.'.'---.---....

Radical Computing MU 8

attractive option to pursue for realizing 'wire'. We base this conclusion on the lack of any solu-

"* tion to the efficiency problem mentioned above.
'I

,,

2.6.2. Solltons

There are several potential uses of solitons as carriers of signals in the wire, delay lines,

switches and i/o conversion devices of molecular computers. Here we will only summarize one

aspect of solitons, their use as signals over 'long' ('10- m) distances. In this context, it is gen-

erally assumed that the word 'soliton' refers to the non-linear topological excitation of a long

molecular chain such as polyacetylene, the solitons being the bond-alternation domain walls. Soli-

Aton propagation, in effeck then, a propagation of a configuration (mechanical) change, is limited

by the speed of sound in the material, about 104c. Over the distances we have in mind for 'wire'
(10s meters) this corresponds to about 10- seconds. This is far too slow for our purposes. As a

result, the use of solitons to carry long-range signals is not attractive, and so will not receive any

further attention in this report.

.Solitons may, however, be important for conducting signals over short distances in other

specialized circuits. Thus, solitons cannot be entirely dismissed as signal carriers.

2.8.. Clasile Conduction

In today's computers, wires range in length and materials, as indicated in Table 1. At best

resistivity is about 1o Ohm-cm for wire materials. The resistance of molecular wires can only be

crudely estimated, but for a wire of copper, of length 10- cm, diameter of 107 cm the resistance

is about 1000 Ohms or so, barely within the range of acceptable resistances. Therefore it will be

difficult to employ the usual conductors of higher resistivity as shown in Table 1.

..

[..--...

.4.,"

" -., .; ' ; -. . ..- .. -,. . ., / .- -. -. . . - -. . -. ., .- , ., . • , , .- . -. ,*~' . .. , . , , . -. , . . , , - . ., . , .

.4 Radical Computing IM g

TABLE 1: Properties of 'Wires' Used in Computers
Resistivity Length Diameter Resistance

Material Range Range Range Utilization
(Ohm-M M (M (Ohms)

Copper 1.73 * 10' 10-2 - 10-0 10- - 10 3 10- - 100 Back Planes, PC Boards

Gold 2.44 * 101 1076- 103 1076- 104 10-6 - 10- Bonding Wires, I.C.'s

Aluminum 2.62 * 108 10-8- 103 10-e - 10-3 10-e - 101 Lead Frames, I.C.'s

Doped Si 1.00 * 1 0-7 - 10-4 10-- 10 4 10-4 - 103 I.C.'s

Silicon 8.5 * 1074 - 104 10-8- 10 4 10-2 - 105 I.C.'s

2.6.4. Super Conductors

Because of the difficulties of other possibilities for wires, superconducting wires look attrac-

tive. There are several possible molecular superconductors. We will mention only a well known

one, (SN) , polysulfur nitride.

Polysulfur nitride was the first polymeric metal, having been discovered in 19101161. It was

discovered to be superconducting only in 1975. In the past, there has been some controversy

about the transition temperature. It is now thought that the transition temperature for individual

fibers is 0.28 K but when bundles of non-perfect fibers are measured, the conductivity depends

upon interactions between many fibers and the transition temperature then varies from 0.26 to

0.28 K[16.

This material can be formed into single chainsi9i of the form:

• Y
N NNN

N N N

S S S
i

T

'.4

.%-.-., - - -- - - - - - - - - - - - - - - - - - - . . .

.. *t.

.

V V W W W - - - - - ---,WW .1 W

Radical Computing HI 10

Actual signal paths would probably employ a number of parallel chains, mostly for reliability.

Superconductors seem the best possibility for realizing wires in the molecular computer.

2.7. Logical Switches

The best possibility for a molecule-sized, logical switch (molecular gate) seems to be a an

electron tunneling device. According to Carter[9 this idea originated with Pschenichnov who sug-

gested that the transmission coefficient of an electron approaching a finite series of potential bar-

riers would be unity if the electron energy exactly matched the pseudostationary potential of each

barrier. Of course any perturbation of any of the barriers would forestall any electron conduction.

Thus if a stack of molecules served as the series of potential barriers, then an electrical charge

arriving at the edge of one element of the stack would prevent electron conduction from a power

source to ground. Since the voltage of such a power supply can be easily controlled, the matching

of the electron energy to the stack potentials should be possible. It seems feasible to use (SN). as

'wire' between such devices. Figure 1 illustrates this idea to realize a NOR gate.

2.8. FlIp-Flops

The best method to implement flip-flops in molecular circuits seems to be the same as in

modern digital electronics: Make them from gates.

2.0. Random Accem Memory

The creation of a molecular random access memory (RAM) can be approached as it is in

today's VLSI circuits, that is , build them from gates. However in the molecular world there is

likely to be a much better approach possible by taking advantage of special molecules that can be

much more efficient in storing a bit as a charge-controlled, conformational change. This idea is

even more speculative than the NOR gate idea discussed above.

.

hi-j~,,,"S~

Radical Computing I 11

a. v" b.
NOR GATE

I I

4. OUTPUT IRing OUTPUT

INPUT e INPUT INPUT INPUT

A - --a -No4N
F

(aN). Ing

C. Ring C d. Ring D

-- fen~N C=l =-ls -
/ N N"

Figure 1. Molecular NOR gate (From Carter, op. cit.).

2.10. Conclusions

The molecular computing ideas presented here are very speculative, but do illustrate that

there is considerable potential that molecular computers will be constructed, if not by the exact

ideas presented here, then by some other approach.

.4-.

,'.+ " :+, " ".. .• ",,.; ...-.- v. •, .•_. '. -... ••...... + - - -. .- - ' . . ., . .. >

Radical Computing I1 12

3. TRANSFORMATION OF METHODS

3.1. Introduction

In computer programming, as in general mathematics, often a method conceived to solve a

problem is relatively inefficient compared to what is possible. Consider the calculation of the

'S Discrete Fourier Transform (DFT). Only recently was the Fast Fourier Transform (FFT)

Adiscovered, despite the simplicity of the DFT and the large performance improvement offered by

the FFT. If we could find a general method of transforming weak methods like the DFT into

strong ones like the FFT, a radical improvement of performance would result. Thus, ultimately

we seek a general computer program that can accept a weak method and produce a strong one

from it. Generally, this is a very difficult and open problem. In this report we will discuss some

approaches to this problem and will consider a small, restricted, example of such a program which

we developed to aid our understanding of this problem.

3.2. Approach

The general idea if to start with a general, weak, method for solving problems in a domain,

we then use the experience in problem solving (and analysis of available acquired-knowledge in

the domain) to formulate a stronger solution- finding procedure. Whenever possible, we find spe-

cialized and very strong procedures for subdomaine of the domain.

There is an increasing amount of A.l. research in transforming weak methods into strong

ones: Mostow[l7j, Mitchell[18, 191, Amarel[20, 211, Anzai and Simon[22]. There is similar work in

the Soviet Union: (see publication by Glushkov's group in Kiev in mid-seventies on learning stra-

tegies for solving planning problems). Bundy's algebraic manipulation problem (in the algebraic

manipulation system called PRESS)23] provides a good vehicle for assessing this approach and

for identifying key research issues.

Bundy's problem can be formulated as follows:

(1) Consider the domain of R-elementary expressions (given

in Bundy, p. 207)[231,

,'. ... t..
"" "-"""'-"•-'-"""'-:"""''- -.-:"" " -""'"". "- " "" - "''-"- - .. -' . ". "" : "" '."m" .'.' ' ".='- ''. ' : " -'..'.; J-,_7.
.- . - . .-- . .- . . .- - -..%

.., -•,% o • ,-----... • % - w 11. K6 % . o .% % , . ,

! , I
Radical Computing M 13

and the axioms of algebra [commutativity, associativity,

distributivity, existence of inversioni.

(2) Given an equation in the form of an R-elementary expression,

in a single unknown, x.

(3) Solve the equation, i.e., find an expression which

(i) is equivalent to the given equation

(ii) has the form

=T[ezj,I
where the right side is a term from the language

of R-elementary expression that does not contain x.

(iii) T is 'simple' (where 'simplicity' is interpreted

as 'structural simplicity' of the term).

SThisNow, the problem can be approached by a conventional weak method of forward search.

This method starts with the given equation and, after successively applying algebraic axioms,

transforms the equation into a form which is acceptable as a solution.

Bundy's paper focuses on a stronger method (which can be viewed as an expert method in

this task domain) where a procedure is introduced with a considerable amount of structure.

This procedure consists of five major methods. These methods are:

Normalize,

Isolate,

Collect,

Attract,

Tidy.

Each of these methods utilizes, in a specialized manner, subsets of the algebraic axiom. With

each method there is an associated set of applicability conditions.

d, A-. . .'. - - . . . , . . • . . . , . ' - , - -. ., - - , '

Radical Computing Ml 14

The Normalize Method puts the initial equation into a normalized form. Its applicability

condition is the presence of a non-standard symbol. For example, Normalize converts the expres-

sion A/B into A*B^(-I), which "looks" worse, but eliminates the need for the division symbol "/".

Thus this form is actually better relative to the total number of symbol types needed to express

all equations.

The Isolate method strips out connectives from the term that contains x in the expression

under consideration, and eventually brings the expression to a form:

F :z = Tz]

The Isolate method is applicable only if the expression F has a single occurrence of x.

The Collect method reduces the number of occurrences of x in an expression under con-

sideration; of course, this method is applicable only if the number of occurrences of x in an

,* expression F is larger than one. (N(x,F) > 1).

The Attract method transforms an expression F so that it has a form on which the collect

method can apply. Eventually, the Attract method consists of 'bringing closer' or 'grouping'

terms in x. Here again, the method applies only if N(x,F) > 1.

The Tidy method reduces the structural complexity of any term. This method is applied

wherever possible.

Now, the overall Solution method consists off applying in sequence Normalize, Attract (if

needed), Collect, and Isolate. Throughout this process, Tidy is applied whenever it is applicable.

The interesting issue is understanding the transition from the weak, flat, solution method to

• the structured expert method. What is involved in this transition? What are the bodies of

-knowledge needed a priori to effect the transition? What representation and process can be used

to mechanize the transition? What are the key open problems in this area?

Consider a restricted domain, with expression from a restricted language, L, where the only

l-ary function symbols are '-', 'square', 'squareroot', and the 2-ary function symbols are '-', '+',

*, . (This means that trigonometric and exponential functions are excluded). The restricted

domain permits some simple experiments in the domain.K.-'--

Radical Computing M 15

Now consider applicability conditions for elements (moves) of the lolate method. The struc-

ture of the current expression, F, can be represented in the form of a tree, as follows:

F: +.F 2

Fj1 1 F12

Now let F, be the largest subterm of F containing x. We represent F 1 by the subtree of F which

is rooted at + . Also, F11 is the 'child' of F, that contains x, F1 2 is the 'sibling' of F11, F2 is the

'sibling' of Fl. N(z,F) = 1 : This is the main applicability condition for the Isolate method; it

states that the number of occurrences of x in F is 1.

Now, if the conditions apply, then by applying the 'inverse of + ', i.e., by adding -F 12 to

" both sides of the equation we obtain a reduction by 1 of the depth of x in F (which is the goal of

application of steps in the isolate method).

Thus, the effect of the move can be seen in the form of the transition:

+ F2 F11

Fil F12 F2 F12

Now, similar rules exist for cases where root-of-F is '-' or '*' or '/'. Slightly different forms

are needed where root- of- F, is 'squareroot' or 'square'.

Next, consider what enters in applicability condition. for elements (moves) of the Collect

method. The current expression is F, and F, is a subterm (subtree) of F.

17*

,...'.....>. -....-...... •....--.........-... •.-. .,. . . -.. ,.. .
i! : :.,.i i ,7, -.-, ,- .' : ':.. -",. . : ., j .''.- . . , , ,.,.,. . .-. ',-" ,, : -, : -.. , .,.- -., , ,.' ,., .,' .,''.' .- .

* , , . - * z , yr. 9. . *CW S.. WZW bY d ,V t _ N.- , w'U :k . 9 - -. - . . -,W u - , - ., .U -

-.9

Radical Computing I 16

N F 1 F13

F, is the least dominating term in x of the expression F, with two of its immediate subterms

(immediate subtrees) containing x. In the tree representation, these subterms are shown as F11 ,

F 12; and F13 , F14 stand for terms of arbitrary form. Now, if N(x, F) > I : main condition

(there are at least 2 occurrences of x) and Fil[,zI = Fj2iexI Then the following distributive axiom

applies:

(u * v) + (u * w) = u * (v + w)

The system matches F11 [x], F11 jx] to u and the effect of the 'move' application is as follows:

+

* * F11 +
F11 F13 F12 F14 jexJ F13 F1

In this transition, the number of occurrences of x decreases -- which is the goal of Collect

moves.

Now, the key problem is how to automate the formulation/discovery of applicability condi-

tions for moves such as the above Isolate and Collect moves.

- What is involved in approaching the problem in the same way as in Meta-dendral and
.o

LEXft4]? Briefly, we analyze traces of solutions (obtained via the initial weak method). For

each application of a move (i.e., application of an algebraic axiom) we retain the contezt of the

expression on which it is applied. Then, we formulate a generalization as a pattern which is con-

sistent with all the contexts of expression associated with application of the move. To obtain

such generalization we keep a version space of generalization.

I%
•).. . . -N. , .. .,,,y ,. .,,. ,: . ..,/ .,.,, , . .,, .,, , . ,,°,. , . .,.. , .. .

Radical Computing I 17I

Upon examination of the Bundy problem, we see that a LEX-like approach to learning

strong applicability conditions for moves is possible provided that:

(a) We have an 'appropriate' representation framework

for expressing 'expression contexts' (in terms of

which applicability conditions are to be .

formulated), and

(b) We have a notion of a 'generalization' hierarchy

to help us formulate patterns in a set of

'expression contexts'.

It appears that there is no difficulty in defining a generalization hierarchy in the present

domain. The definition of R-elementary expressions (p. 207 Bundy paper) provides a good basis

for the hierarchy; but some changes may be necessary. More work is needed here.
r .

To obtain an appropriate representation framework, it is important to reason back from the 'A

bb overall goal of the equation solving task. We can find concepts such as:

-Number of occurrences of x in a term,

-term - subterm relationship,

-term including x,

-notions of structural simplicity of expressions

in the initial problem formulation. Work is needed to assess the difficulty of mechanizing this

choice of conceptual framework on the basis of transfer from the problem formulation.

Note that a LEX approach to procedure improvement may be sufficient in this case. How-

ever, it may be desirable to have an approach that leads to the structural description of methods

presented by Bundy. To do this, we need to be able to discover a global decomposition of stages 7

in solution and to formulate for each stage a micromove/maneuver. This is a very promising

direction of research on expertise acquisition in problem solving. More research is needed here.

Radical Computing III 1

3.3. JASON-PRESS System

In order to evaluate the approach taken by Bundy and Welham, in their construction of the

PRESS system, we attempted to reconstruct part of PRESS from the fragments that have been

published. The part we attempted to reconstruct was just enough to do simple algebra problems.

A listing of our version of the PRESS system is given in the appendix.

The reconstruction was largely successful, in that our version could solve many difficult

algebra problems and all but one of the examples that PRESS could solve. This is the equation:

2cO'z),2S ir())cos(,) 2(1/4)

We believe with the addition of more specialized axioms this problem could probably be solved by

our PRESS system. More interesting however, we have tried some problems that we feel PRESS

cannot solve, because of the fundamental structure of PRESS. In particular PRESS has

apparently only ad-hoc facilities to factor equations, even when it would be simple to do so. For

example our version of PRESS (JASON-PRESSI cannot solve the simple formula

log'X-logz - 0.

Factorization is one approach, thus transforming the equation to:

y=logex ; y 0.

Then again transforming to

z=eY y(y-1)=O,

and then again to

'-'. y---0" =l " z~ev.

This observation led to a new idea to add to the capability of PRESS. This is to add is the max-

r "imum height of the covering-tree of X. The reduction method is to reduce the maximum height

of this covering-tree of X. For the example shown above, the tree is:

Radical Computing M 19

log
log 2 e l X

e

The maximum height of this tree is the length of the far left branch (four edges). The

transformed covering-tree (set) is:

Xe Y Y 0 Y ' I 0

The maximum tree-height is now only two links. Although we have not taken the time to imple-

ment the FACTOR solution method in JASON-PRESS, it seems clear that it would not only

allow a wider range of equations to be solved, but would provide a very clean method of solving

the one equation given by Bundy and Welham that our version of PRESS could not solve.

We learned a great deal in implementing and experimenting with our version of PRESS.

First, we found the power of Prolog to implement Meta-rules outstanding. Second, the power of

the meta-rules to improve performance was impressive. Third, the difficulty of implementing real

programming systems is still with us. Finally we gained much insight into the possibility of

automatically producing strong programs from weak methods.

3.4. General Strength Improvement Scheme

We now wish to work out a general strength improvement scheme from what we have

learned from our experimentation with our PRESS system. PRESS solves equations in ordinary

algebra. This algebra has a formal axiomatic definition. Table 2 illustrates a suitable fundamen-

tal set of axioms for algebra, and in the form of Prolog facts. It is easily read. For example the

entry axiom(5,A+ B,B+ A) says that this is the 5th axiom and that the term A+ B may be

.

Radical Computing 1I O0

replaced by the term B+ A. A and B may represent any simple or complex expression.

" The weak solution method is very simple, but very general. Lemmas are derived from

axioms until one is found that will convert a general equation, into the form:

x = Expression (not containing x).

Now we will derive a Prolog representation of this concept.

It is true that we can solve Ezpression with respect to X for an Answer IF it is true that there is a -

lemma that converts Expression to an answer of the form x = Ezp AND it is true that there is

no-occurrence of X in Ezp. In Prolog this statement is:

solve(Expression, X, Answer) IF

lemma(Expression, X = Exp) AND

no-occurrence(X, Exp).

The definition of the lemma concept contains the search component. A lemma transforms an

Expression to a Result IF there is an axiom that relates the Ezpression and the Result. In Prolog

this is:

lemma(Expression, Result) IF axiom(Expression, Result).

Also a lemma transforms an Expression to a Result IF there is an axiom that transforms Expres-

sion to the Answer AND a lemma that transforms the Answer to the Result. In Prolog this is:

lemma(Expression, Result) IF

axiom(Expression, Answer) AND

lemma(Answer, Result).

The concept of a transformation axiom is a simple statement of fact:

I axiom (A*B, B*A).

There are about two dozen such axioms needed for ordinary algebra. Table 2 illustrates these and

'5, the 'structural' axioms to be discussed next.

'~42 1 ---

Radical Computing M 21

.4 Table 2. Fundamental axioms.
'% Equality axioms

axiom(,A=B,B=A).

% Addition axioms
axiom(1,A+ B,B+ A). % Commutation
axiom(2,A+ (1+ C),(A+ B)+ C). % Distribution
axiom(3,A+ 0,A). % Existence of Zero
axiom(4,A+ (-A),O). % Existence of Negative

% Multiplication axioms
axiom(5,A*B,B*A). % Commutation
axiom(6,A*(B*C),(A*B)*C). % Distribution
axiom(7,A*1,A).% Existence of One
axiom(8,A*A (-1), 1) :- A ==O. % Existence of Inverse
axiom(9,A (-1),1/A). % Definition

% Distribution
axiom(10,A*B+ A*C,A*(B+ C)). % Add/Mult Distribution

% Exponentiation
axiom(11,A^X*B X,(A*B) X). % Distribution
axiom(12,A^X*A^Y,A^(X+ Y)). % Distribution
axiom(13,A 1,A). % Existence
axiom(14,00,1).% Definition
axiom(15,log(e^X),X). % Existence of Inverse
axiom(16,root(X,A-X),A). % Existence of Inverse
axiom(17,root(2,X),sqrt(X)). % Definition

% Trig
axiom(18,sin(O),O). % Definition
axiom(19,sin(pi),O). % Definition
axiom(20,cos(O), 1). % Definition
axiom(21,cos(pi),-l). % Definition
axiom(22,sin(A)'2+ cos(A)^2,1). % Definition
axiom(23,sin(A)*cos(A)'(-),tan(A)). % Definition
axiom(24,sec(A) (-l),sin(A)). % Definition
axiom(25,cosec(A)^(-1),cos(A)). % Definition
axiom(26,cotan(A)-(-1),tan(A)). % Definition

axiom(27,arcsin(sin(A)),A). % Existence of Inverse
axiom(28,arccos(cos(A)),A). % Existence of Inverse
axiom(29,arccosec(cosec(A)),A). % Existence of Inverse
axiom(30,arctan(tan(A)),A). % Existence of Inverse
axiom(31,arcsec(sec(A)),A). % Existence of Inverse

axiom(32,arccot(cot(A)),A). % Existence of Inverse

% Structure
axiom(Ii,N], E,A):- axiom(N,A,E).

- ..-

,-- ,.................-....:... - 4-:-...

Radical Computing M 22

axiom(N, E,A):-
E=..[Op,L,RJ,
((not atoinic(L),axiom(N,L,NL), A=..[Op,NL, RI);
(not atomic(R),axiom(N,R,NR), A=..[Op,L ,NRJ)).

axiom([f,Opj,A=B,NA=NB)
member(Op,I+ ,-,*,/," ,log,root]),
(NA=..Op,A,X],
NB=..[Op,B,X);
member(Op,[-,sqrt,sin,cos,tan,sec,cosec,cotan,

arcsin,arccos, arc tan,arcsec,
arccosec,arccotan]),

(NA=..[Op,A],
NB=..[Op,BJ).

The first structure axiom is the statement that axioms can be applied in either direction.

While some axioms are their own inverse, some are not. Therefore for some axioms, we need to

provide an inverse; In Prolog this is:

axiom (x,y) IF axiom (y,x).

Thus either Ijthe above statement, can be included in the axiom set, or 2) only the inverses of

those axioms to which it applies can be included in the axiom set. For example, p

axiom(A+ (B+ C), (A+ B)+ C) needs an explicit inverse in the form:

axiom((A+ B)+ C,A+ (B+ C)), while axiom(A+ B,B+ A) needs no explicit inverse (it is its own

inverse). Table 2 illustrates the use of the first approach.

In the algebra systems we wish to examine, algebraic structures are built up from atomic

symbols such as '3', 'x', 'father'), and operators such as (=,-,*,/}. Axioms and lemmas apply to

both whole expressions and the non-atomic components of the expressions. For example the

axiom A+ B <=> B+ A can be applied to x*(a+ b) to yield x*(b+ a). Therefore it is an axiom

that an axiom can also be applied to components of an expression. Also then, an axiom

transforms an Expression to a Result IF the Expression is parsed into an Operator, a Left part

and a Right part AND either the Left part is not atomic AND an axiom can transform the Left

part into a New Left part AND the Answer can be constructed OR the Right part is not atomic

AND an axiom can transform the Right part into a New-Right part AND the Answer can be con-

structed. In Prolog this can be added to our other definitions of axioms as illustrated in Table 2.

.%s iT

v-
e

. ¢ - , - .9 ,, - " - " - o "- - - - - .- " , • - - • - - •- w 3-. . - -..

'" " " " " " " " " " " ' " ' " • "' " ' " ' ?'O d,:,.' '- .-.4

Radical Computing I 23

In Prolog it is customary to compress the notation and use ':.' in place of IF, ',' in place of AND,

and ';' in place of OR. We will switch to this notation below.

3.5. Results

A Prolog query to solve a very simple equation z-a=O is: sorve(z.a=O,z,Resut). However

for our weak system, the full axiom set is too big for our weak system to explore in a reasonable

time. Therefore we have removed all axioms except those that apply to structure, equality, addi-

tion and subtraction. The resulting simplified program, but modified to produce a proof, follows.
-'S

p :- prf(Proof), .1

solve(Proof, x-a=O,x,Result),

ni,write('Result: '),

write(Result),nl,

write(' Proof: '), j
write(Proof),nl.

prf((% This is a hint consisting of the first two steps

. [p,l,3],

[p,l,lp,r,4.-

fT J).]
solve(P,E,X,X=A) :- lemma(P,E,X=A),nooccurrenceX,A). % Solve procedure

lemma([N],E,A) :- axiom(N,E,A). % Lemma procedure

lemma(N1MI,E,A) :-lemma(M,E,T),axiom(N,T,A).

o.no.occurrence(X,[]). c'A

4,,

..........,m% " . .. • a....,.
o

. ,. ...-•°° .o.-. -. . .. " " ".",°i-++% - .+°°' ."."." °'.'
' °

.°'''""° ." " - ° ' .' -° -i~
. ' •

.' ~. . °.
" + ' ' " ° ' . ' '

Radical Computing Ml1 24

no_occurrence(X,llll).

no-occurrence(X,H) :- atomic(H), X == H,!.

'
, no.occurrence(X,Exp) :- Exp [.. 1Op, YITI,

"' " no occurrencelK Y),!,

no occurrence(X, T),!.

% Fundamental axioms limited to + ,-

% Equality axioms

axiom(O,A=B,B-A).

% Addition axioms

axiom(1,A+ B,B+ A). % Commutation

axiom(2,A+ (B+ C),(A+ B)+ C). % Distribution

axiom(i2,(A+ B)+ C,A+ (B+ C)). % Distribution

axiom(3,A+ 0,A). % Existence of Zero

axiom(i3,AA+ 0). % Existence of Zero

axiom(4,A+ (-A),0). % Existence of Negative

axiom(i4,0,A+ (-A)). % Existence of Negative

axiom(n,(A - B), (A + (-B))). % Definition of Negative

axiom(in,(A + (-B)), (A - B)). % Definition of Negative

axiom(N,E,A) :- axiomp(N,E,A).

axiomp(lp,l,N], E,A):-!, E=..Op,L,RI,

not atomic(L),axiom(N,L,NL), A=..Op,NL, R.

axiomp([p,r,N, E,A):-', E-..IOp,L,Ri,

not atomic(R),axiom(N,R,NR), A=..IOp,L ,NRI.

axiom({f,Op],AfB,NA=NB)

I-
' .

- -', , -.,.-. .', .' ,.., .' '.- ' ".. " .' .' .''',-. . -.' .' ,,' .. - -. ,... .. -- '. ,- .'. . ,.. ,' ,, . .- . - . ' - .. -,. . . " " ".•* .- -*,

', ',. ''.; ',:- -,:, ,' '' '''-,. '..-..' ' ".:.,..; ..\, -. -...' ,. -V ' -.-,,- - .-"-. %'' "- .'- .- ," ,'.,' ¢ .''. 4"'" 'P A ¢ .

Radical Computing HI 25

(NA=..[Op,A,X],

NB=..IOp,B,X);

-: member(Op,[-]),

(NA=..1Op,A],

,-. NB --..[Op,B]).

member(X,IHIT]):- X=H; member(X,T).

If a very simple problem such as solve x-a=O for x is given to the weak method just out-

lined, it will blindly search through all combinations of its axioms till it finds a result. When we

tried this, our VAXIl/750 ran four hours without finding a solution. This corresponds to more

than a million logical inferences. To verify the correctness of the program, we modified the pro-

gram to accept hints or even a full proof. Then the system would discover, in a few minutes, a

solution if it was given either the first step or the last two steps of the proof. The weak method is

_m indeed weak!

3.6. An Experiment

To explore the potential of the strengthing of this method, we replaced the fundamental

axioms, with richer more powerful ones that could be derived from the fundamental set. Again

only a restricted set of axioms were included, however besides addition and subtraction, some

additional axioms were added. This system follows.

,..-,

test :-

nl,write(' Attempting to solve b*(a-x)=c'),nl,

...

-'.''.''.' i- ,'...- ?" '.? i . . '-.i-. ". .. . ? " -- -..-- -'-.'-.' .'- "- .9.-. .'-. 9" " "..".. -.. ',

Radical Computing MU

solve(N,b*(a..x)nC,XA),

write(' The answer is ',write(A),

write(' Proof: '),write(N),ni.

solve(P,E,X,XrnA) :- Iemmra(P,E,X=A).

',p Iemma(INIE,A) :- ax(N,E,A).
I Iemma(ENI M,E,A) :- Iemnma(M,E,T),ax(N,TA).

ax(N,E,A)- not atomnic(E), axiom(N,E,A).

* axiomn(l, A=B,B=A).

* * axiomn(2, A*B,BIIA).

axiom(3, A+ B,B+ A).

axciorn(4 ,(A-B),(-(B)+ A)).

axtomn(S ,A+ B-o,A-(-(B))).

axiomn(6, A-B=O,A=B).

axiorn(8, A+ B-C,A=CB).

axiomn(9, A-B=C,A-C+ B).

axiom(0,ABCA-C/B) :- not B =0.

axiom(1,A*(B-C),A*B..AiC).

axiom(12,A*(B+ C),A*B+ A*C).

axiomf N, E,A):

E-. .10p,L,RJ,

((ax(N,L,NL), A-..IOp,NL, RI);
(ax(NR,NR), Am...f0p,L ,NRJ)).j

.rr2 :6 - - - -

* Radical Computing IU 27

This improved system is much more powerful. It immediately solves, un-aided, the expression x-

a=O, and is capable of solving much more complicated expressions such as b*(a-zj=c in just a

*few seconds. The power of the 'derived' axioms used here is very apparent. In particular the

axioms (A-B=0, A=B) was especially useful. It is, of course, just an axiomatization of the

results of solving our original example equation. This result, leads to the idea of automatically

generating a stronger method from a weak one.

3.7. Generating a Strong Method

We have gained some insight from the above described experiment and our experience with

the PRESS system.

(1) Powerful methods require powerful rules (axioms).

(2) Powerful rules can be derived from fundamental ones, that may be weak.

(3) When humans solve equations, they only apply the axioms that will be likely to lead to a

solution. The PRESS system mimics this idea with its metarules that control the applica-

tion of axioms.

Our idea of automatically generating a strong method form a weak one is a generalization of

the method used in PRESS. It will also result in a somewhat weaker system than PRESS, as it

will not have the extensive, by hand, fine-tuning that has been devoted to the PRESS system.

The method follows in the next four subsections.

3.7.1. Metrics

First we define a set of metrics that estimate the distance an expression is from a solution,

S-A-- in each of the corresponding dimensions. These metrics are summarized in Table 3.

.'" " " "'"' "'
"' '"

,"," " " .. . ,'. -...- ",-• " ".- ".", . ..

.-..
.

...,.. .,..... ,,... ., - .. . ,,. ,

Radical Computing M 28

__________TABLE 3: Axiom Sets for PRESS.
SET METRIC EXAMPLE

NAME
NORMALIZE* of operator A/B ->A*B-(-1)

____________symbol types
TIDY* # of total A+ 0 ->A

occurrences of
_____________all operators

ATTRACT* Size of the log(X) + log(X) ->log(X*X) '
covering tree
of X

COLLECT* # of occurrences X + X -> 2*X
of X

ISOLATE* The distance of X Y + X -> X+ Y
from the left

_____________side of expression _______________

FACTOR Max. depth of the X*(X-1)=0 - X=O;X-1=0
covering tree of X

*These sets were originally designed by hand by
Bundy and Welham for the PRESS system.

All but the last one were inspired by the PRESS System of Bundy and WelhamJ23j (The PRESS

paper). All the metrics are explained above. For each metric we must write a Prolog procedure

to determine if one expression is an improvement over another expression, relative to the metric.

For example consider the tidy metric. Its metric is the total number of operators that occur in an

expression. A Prolog procedure to measure this CoaL of an Ezpreueion is:

cost(Expression,0) :-atomic(Expression),!.

cost(Expressi~n,0) :-var(Expression),!.

cost(Expression,Cost) :-Expression =. .[Op,R,LJ,

ii cost(L,CI), cost(R,Cr),

Cost is 1+ CI+ Cr,!.

* cost(Expression,Cost) :- Expression =..[Op,Ll,

cost(L,CI), Cost is I+ Cl.

LVk-

U Z

w-,,,r: W- W' , ,~ .i - - ',n- . ,- r'..... r (ZTC W-W, . -e .1 ;..- , . X P .. C.. .C ., - . . .- i° % -

Radical Computing HI

The first two lines assign zero cost to atoms and variables. The remainder count operators. The

improvement procedure (for tidy) can now be written as:

improved(E,R) cost(E,Ce), cost(R,Cr), Ce>Cr,!.

3.7.2. Selecting Lemmas

Second, We generate lemma for the fundamental axioms as described above, and select only

those that can improve an expression more than those that have already been selected. We call

the survivors axioms but also signify to which set they belong. Thus axioms generated to tidy

expressions and called tidy-axioms. Since the fundamental axioms are bi-directional in their

application, the fundamental lemma generation process will itself generate potential expressions

for potential improvement. There is a recursive 'boot-strapping' process going on here. It must

start somewhere. Therefore a 'starter' axiom must be provided. For the tidy axioms, this will be

the null tidy_;axiom(E,E).

This technique has some similarity to the Knuth-Bendix procedureJ25] and to the 'chunking'

ideas of Newell, Rosenbloom and Laird[26, 271.

3.7.3. Structure Axioms Third, we will rewrite the fundamental structure axiom to only

employ the new special set of axioms. For the tidy axioms, we will call this procedure 'tidy'. How-

ever it must do more than just find some improvement in an expression. We want it to find all

possible improvement. Thus it will not only apply axioms to the components of an expression, but

to the composite constructions as well. This procedure is very similar to the tidy procedure of

PRESS as it appears in the appendix. In Prolog it is:

tidy(U,U) :- atomic(U),!.

-',: ,-~~~~~~~~.-.............-..-.......,.........-....... . .°.-.....-.....................-..-............ . - .

.' '.'.. ._. \ ' 2" . ' " ." " . . .".. " -". .". " "." -"- ." •" •" -.. '-"..:. .. •"

Radical Computing MI 30

tidy(U,U) :- vat(U),!.

tidy(U,Z) tidyax(U,V),

(split..exp(V,Op,L,R),

tidy(L,NL), tidy(R,NR),

W =..(Op,NL,NRJ)

(V ==.O1p,RI,

tidy(R,NR),j

W =.[Op,NRj)

tidyax(W,Z),

improved (U,Z),!.

tidy(U,V) tidy ax (U,V), improved(U,V),!.

tidy(U,U).

3.7.4. Arithmetic Fourth, We will provide an axiom to do arithmetic. This will allow expres-

sions such as 1+ 1+ 1 to be reduced to a single number (3 in this case). Obtaining a powerful

such a addition reduction of number is not at all simple, if it must be derived from fundamental

arithmetic axioms. However it is of course very important for computing and is hard-wired into

every modern digital computer. So we will adopt numeric reductions without resorting to funda-

mental'axioms. In Prolog the axiom is:

tidy ax(Ex p,R sit) :-Exp =..0p,A1,A21

number(A1),

number(A2),

Rslt is Exp.
L

L%

F . % % r..e,'., ;% .. ,. '

Radical Computing III 31

In Prolog the 'is' predicate causes expression evaluation. It generates an error message on non

numbers, so the check of the arguments was included.

3.7.5. Tidy Axioms

We are now ready to present the Prolog program that will create the tidy_.axiom set. We

assemble the fundamental set of axioms, the lemma procedure, the 'null' tidyaxiom, the arith-

metic reduction tidyaxiom and the tidy procedure derived from the fundamental structure

axiom. All of these have been shown above. The procedure that creates the tidy axioms is then:

mktidy :- lemma(E,R),

tidy(R,X),

tidy(E,W),

improved(W,X),

assertz((tidy-axioms(E,X))),fail.

The program calls for a fundamental lemma, tidies the result, tidies the original expression using

what tidy_axioms it has, and if the tidied lemma result is an improvement, a new tidy--axiom is

added to the current set. This program, once started, will not terminate till it runs out of

memory space, or is interrupted. It will continuously attempt to create new unique tidy axioms,

even if this is impossible. When it was started it ran for hours before it ran out of memory. It

generated an interesting set of tidyaxioms all within a few seconds. They follow.

tidy ax(arccotan(X)=arccotan(Y),X=Y).

tidy ax(arccosec(X)=arccosec(Y),X=Y).

IL:ii:!~i . :::i", !ii;.. !.i i: i ::::ii::::% i : -. / :! :i: : :i,:i..:. .: : ./ : :

Radical Computing MI 32

tidy..a(arcsec(X)=arcsec(Y),X=Y).

tidy-.ax(arctan(X)= arctan(Y),X=Y).

tidyax(arccos(X)=arccos(Y),X=Y).

tidyax(arcsin(X)=arcsin(Y),X=Y).

tidy ax(cotan(X)=cotan(Y),X=Y).

tidy...ax(cosec(X)=cosec(Y),X=Y).

tidy..ax(sec(X)=sec(Y),X=Y).

tidy...ax (tan (X)=tan(Y),X=Y).

tidy-.ax(cos(X)=eos(Y),X=Y).

* tidy...ax (sin (X)=sin (Y),X=Y).

tidy...ax(sqrt(Xfrsqrt(Y),X=Y).

- - tidy__.Ax(-X=-Y,X=Y).

* tidy._.ax(root(X,Y)=root(Z,Y)X=Z).

tidy _.ax(Iog(X,Y)= Iog(Z ,Y),X= Z).

tidy__.ax(X Y= Z YX= Z).

tidy-.ax(X/Y= Z/Y,X= Z).

tidy...ax(X*Y= Z*Y,X=Z).

tidy...ax(X-Y= Z-Y,X= Z).

tidy..ax(X+ Y=Z+ Y,X=Z).

tidy...ax(arccot(cot(X)),X).

tidy..ax(arcsec(sec(X)),X).

tidy ax(arctan(tan(X)),X).

tidy...ax(arccosec(cosec(X)),X).

tidy...ax(arccos(cos(X)),X).

- . tidy...ax(arcsin(sin(X)),X).

tidy _.ax (cotan (X)'- 1, tan(X)).

tidy _ax (cosec (X) -1 ,cos(X)).

tidy -.ax (sec(X)-1,sin (X)).

Radical Computing M 3

tidy...ax (sin(X) 2+ cos(X) 2, 1).

tidy...ax(cos(pi),-1).

tidy...ai(cos(0),).

tidy...ax(sin(pi),O).

tidy-..ax(sin(0),0).

tidy-..ax(root(X,X X),X).

tidy_..ax(log(e ^X),X).

tidy...Ax(0^0,1).

tidy...ax (X ^1AX.

tidy...a(X Y*Z 'Y,(X*Z)^Y).

tidy-.ax(X*Y+ X*Z,X*(Y+ Z)).

tidy...ax(X* 1,X).

tidy-ax(X+ (-X),0).

tidy_.ax(X+ O,X).

tidy...ax(X=X, true).

It can be seen that there are many similarities between these and the tidy axioms of the

PRESS system.

3.8. Conclusions

Our primary goal was to examine the possibility of automatically generating a strong

method from a weak one. We were not able, in the limited time we had, to investigate all parts of

this problem, but we did determine a general methodology. We successfully experimented with

generating strong axioms from weak ones.

%4

Radical Computing M 34

Our general methodology can be summerized as follows:

(1) Define metrics that estimate the distance to a solution in each dimension of the problem

space.

(2) Generate specialized sets of axioms, selected by each metric.

(3) Apply each set on turn to the expression to be solved so the application of each set pro-

vides suitable expressions for the next set to be applied. See the PRESS system for details

of this.

It does seem feasible to automatically generate strong methods from weak ones in some

domains, at least in ordinary algebra. At the moment we do not have such a system, but it seems

reasonable to expect such a system could be made to work. Clearly much remains undone.

The potential applications of these ideas include not only algebraic manipulation, but more

complex systems as well. For example, if one starts from an axiom set for a Galois field then it

may be possible to derive some interesting methods for dealing with cipher problems, etc. Simi-

larily, if complex arithmetic is added, then some interesting methods for solving signal processing

problems may be possible.

One view of the method is that it is a 'super-compiler'. It is clear that in the future, the

general approach presented here could have significant impact on software development tech-

niques.

Ule

U;
: . '% '% . % °.' - , , '/ " .'. ,'.". ." . . " ," ; o"" - ." "- . . "- , - - - . x r. -- - -, , . .-

Radical Computing m 35

4. REFERENCES

I. A. M. Despain, G. J. MacDonald, A. M. Peterson, 0. S. Rothaus, and J. F. Vesecky, Radi-
cal Computing, Jason, McLean, Va (April, 1983). Tech. Rep. JSR-82-701 I

2. Saul Amarel, Alvin M. Despain, Curtis G. Callan, Jr., and Oscar. S. Rothaus, Radical Com-
puting 11, Jason, McLean, Va (June 1984). Tech. Rep. JSR-83-701

3. A. M. Despain and Y. N. Patt, "The Aquarius Project," Digest of Papers, COMPCON
Spring 1984, pp.364-367, IEEE Press (Spring 1984).

4. C. A. Mead and L. A. Conway, in Introduction to VLSI Systems, Addison Wesley (1980).

5. R. P. Feynman, "The wonders that await a Micro-Microscope," The Saturday Review Vol.
43, p.45 (April 1960).

6. Forrest L. Carter, "Problems and Prospects of Future Electroactive Polymers and 'Molecu-
lar' Electronic Devices," in NRL Program on Electroactive Polymers, First Annual Report,
ed. L. D. Lockhart Jr., Naval Research Laboratory, Washington D.C. (1979).

7. Forrest L. Carter, "Studies in Tunnelling in Short Periodic Arrays," in 2nd International
Workshop on Molecular Electronic Devices, ed. Forrest L. Carter, to be published (1983).

8. Forrest L. Carter, "The Chemistry in Future Computers," Proc. 6th Int. Conf. Comput.
Chem. Reuch Ed., p.225, Elsevier (1983).

9. Forrest L. Carter, "Molecular Level Fabrication Techniques and Molecular Electronic Dev-
ices," J. Vac. Sci. Technol. Vol. B 1(4) (1983).

10. Forrest L. Carter, "Toward Computing at the Molecular Level," in Microelectronics-
Structure and Complexity, ed. Raymond Dingle, Plenum, New York (1983).

11. Forrest L. Carter, "Electron Tunnelling in Short Periodic Arrays," in Molecular Electronic
Devices, ed. Forrest L. Carter, Marcel Dekker, New York (1982). 7

12. Forrest L. Carter, "Conformational Switching at the Molecular Level," in Molecular Elec-
ironic Devices, ed. Forrest L. Carter, Marcel Dekker, New York (1982).

13. Forrest L. Carter, in Molecular Electronic Devices, Marcel Dekker, New York (1982). ILA

14. R. P. Feynman, "There is Plenty of Room at the Bottom," pp. 282-296 in Miniaturization,
ed. H. D. Gilbert, Reinhold, New York (1961).

15. David M. Hanson, "Effects of External Electric Fields and Field Gradients on the Motion
of Frenkel Excitons in Molecular Crystals," pp. 109 in Molecular Electronic Devices, ed.

-* Forrest L. Carter, Marcel Dekker, New York (1982).

16. M. M. Labes, P. Love, and L. F. Nichols, "Polysulfur Nitride - A Metallic, Superconducting
Polymer," Chem. Rev. Vol. 79(1), pp.1- 15 (January 1979).

17. D. J. Mostow, "Mechanical Transformation of Task Heuristics into Operational Procedures,"
Ph D Thesis, Carnegie Mellon University (April 1981).

18. T. M. Mitchell, P. E. Utgoff, and R. Banerji, "Learning by Experimentation: Acquiring and
Refining Problem Solving Heuristics," in Machine Learning, ed. Mitchell, Tioga (1982).

19. T. M. Mitchell, "Learning and Problem Solving," Proc. IJCAI-88, Morgan Kaufmann

20. (1983).

20. Saul Amarel, "Program Synthesis as a Theory Formation Task - Problem Representations
and Solution Methods," in Machine Learning: An Artificial Intelligence Approach, Vol 1I., ed.
Michalski, Morgan Kaufmann, Palo Alto CA (1985).

21. Saul Amarel, "Problems of Representation in Heuristic Problem Solving: Related Issues in

the Development of of Expert Systems," in Methods of Heuristics, ed. Bischoff, Lawrence
Erlbaum (1983).

• -A .; .-. 2' 'i% :-i:.-.2..? :? -?"..".:- .". .i-': -i-:.: -. ? % .. : - - - i. . . -:. -2

:. .:2,:.':".2.".-:..'::".-. ." - .' "".' -" . " ",:. , . : "." " 2 .i .. •..,.,... , .,

Radical Computlng Ml1 36

22. Y. Anzai and H. A. Simon, "The Theory of Learning by Doing," Psychological Review Vol.

86 (1979).

23. A. Bundy and B. Welham, "Using Meta-Level Inference for Selective Application of Multi-
pie Rewrite Rule Sets in Algebraic Manipulation," A.! Journa(16) (1981).

24. T. M. Mitchell, "Version Spaces: An Approach to Concept Learning," Ph D Thesis, Stanford
University (1978).

25. D. E. Knuth and P. Bendix, "Simole Word Problems in Universal Algebras," pp. 263-297 in
Computational Problems in Abstract Algebras, ed. J. Leech, Pergamon (1970).

26. P. S. Rosenbloom and A. Newell, "Learning by Chunking: Summary of a Task and a
Model," Proc. AAAI-82 Nall. Conf. on Al, Morgan Kaufmann (1982).

27. J. E. Laird, P. S. Rosenbloom, and A. Newell, "Towards Chunking as a General Learning
Mechanism," Tech Report, Computer Science, Carnegie Mellon University (March 1984).

-

'

Radical Computing I 37

5. APPENDIXES

.

C,.

o'.'

~. °

C.'2

-. - . * ~' 'o.'-

Radical Computing M

APPENDIX A-i

PRESS
% Main PRESS system Despain August 84 -

consult(normalize),
consult(solve),
reconsult(display).

% Test of press...
tp :- reconsult(prets -ests),

ni, t(N, Exp), write('CASE:',
write(N),nl, press(Exp, X. Ans),
display(Exp, Ans), fail.

% Main PRESS procedure.

press(Exp, X, Ans) :-tidy(Exp,E), normalize(E, Ralt), solve(Rsit, X, Ans),!.

I
r70

Z,.

Radical Computing 111 39

% Normalize Procedure. Despain, November 1984.

normalize(U,V) :-removeall(U, W),! ,restrictall(S, W, V),!.

removeall(U,Z) :-remove(U,V), V ==.. [OplArgs],
removejist(Args,Nargs),
W =.. [QpINargs],
remove(W,Z).

removeall(U,V): remove(U,V).

remove-list!1,II).
removeIist(!HITJ , Nh INt]) removeall(H,Nh),removejlist(T,Nt).

% Remove axioms
remove(A<B, B>A).
remove(A/B, A*B^(-1)).

remove~~root(RI X) -^(I

remove(A, A).

% Restrict procedure

restrictall(S, U, Z): restrict(S, U, V),
V =.. [OplArgs],
restrictjlist(S, Args, Nargs),
W =.. [OpINargs],

restrictfs, W, Z).
restrictall(S, U, V) :-restrict(5, U, V).

restrict-list(S, I, ID).
restrict-list(S, jHIT),INhINtI) :-restrictall(S, H, Nh),

restrictjlist(S, T, Nt).

% Restrict axioms
restrict(u minus, -(U+ V),(-U)+ (-V)).
restrict(.. U, U).

% Test the normalize Procedure. Despain, November 1984.

t :-reconsult(normalize), reconsult(display), ti, td, tu.

ti : Exp = (0<(-(a+ b))),
normalize(Exp, Ans), display(Exp, Ans).

td Exp = a+ b/c,

normalize(Exp, Ans), display(Exp, Ans).

tu Exp = -(a+ b),
normalize(Exp, Ans), display(Exp, Ans).

Radical Computing M 40

% Tidy procedure. Despaim, July 1984.

* tidy(U,Z) :- tidyax(U,V), V =. OpjArpI,tidyjist(Args,Nargs),
W =. OplNargsj,tidyax(W,Z),!.

tidy(U,V) :- tidyax(U,V).

tidyist(1,1).
tidy isIHITI ,jNhINtI) :- tidy (H,Nh),tidyjist(T,Nt).

%Tidy axioms

tidy ax(U = U,true).
tidy ax(-(-U),U).

tidy ax(U^ 1,U).
tidy ax (1 -U, 1).
tidyax(U^0,1).
tidyax(0'U,O): number(U), U ==0.

tidyaxU*I,9.

tidyax(U,U).

tidyax(U*0,0).
tidyax(O*U,0).7.

tidyax(U+ 0,U).
tidy ax(0+ U,U).

tidyax(U-0,U).
tidy ax(0+ (-U),.

tidyax(0-U,-U),.

tidy ax(U-(-V),U+ (V)).

tidy ax(Iog(U,U), 1).
tidy ax(log(U, 1),O).

tidy ax(U*(V*W),U*V*W) atomic(V).
tidy ax ((U*V)* W,U*V* W) :- atomic(W).

% This axiom does simple arithmetic when it can to tidy up expressions.
tidy ax(Exp,Rslt) :- Exp =..~p,A1,A21,

number(A1),
number(A2),
Rslt is Exp.

% These may not be a tidy axioms that are needed to solve eqs,
% but collect axioms.
tidyax(X * X, X^2).
tidyax(X * X^N, X^M) :-M is N+ 1.
tidyax(X^N * X, X^M) M is N+ 1.
tidyax(X^N * (X), X^M): M is N+ 1.
tidyax(XL *X'N, X ̂ M) :-MisN+ L.

% These may not be tidy axioms, but isolate axioms.

0~ W?

mf

Radical Computing MI 41

%tidyax(A - B = 0, A = B).
%tidyax(A + B = 0, A = - B).
%tidyax(A * B-(-1) = 1, A = B).
%tidyax(A * B^(-l) = 1, A = B).

% These are most likely attract axioms.
%tidyax(U'A = U, A = 1).
%tidyax(U'A = U~, A = 1).

-~ %tidyax(U^A - U^B - 0 , A = B).
*%tidyax(UA -U =OA = 1).

tidy ax(U,U).
% Test of tidy procedure. Despain, July 1984.

t :-reconsult(tidy),
4\AExp = (((2*x)^0)^((2*x)1I) =(1-(2*x))*cos(x)0O),

tidy(Exp, Rslt),
print(' Input Expression is
print(Exp), ni,
print(Tidied Expression is:),% Should print 'true'.
print(Rslt), nl.

V1 -- 7A %7-'-'VIV VN-F .4 R V- r-

Radical Computing Ml 42

% Test case.

% Tidy axioms
tidy ax(LT = Utrue).

* tidy ax(-(-U),U).
tidy ax(U -1,U).
tidyax(1 U,1).
tidy ax(U-0,1).
tidyax(0'U,O) :-integer(U), U =~0.

tidyax(Lr. 1U).
tidyax(1*U,U).
tidy ax(U*0,0).
tidyax(0*U,O).
tidyax(U+ 0,U).

-. .,tidy ax(0+ U,0).
tidyax(LI-0,U).
tidy ax(0-U,(-U)).
tidyax(U+ (.0),U).
tidyax(0+ (-U),(.U)).
% It is not clear if the following axiom is a true tidy axiom or not....
tidy ax(U-(-V),U+ V).

tidy ax(U,U).

.'\ ,r,

Radical Computing 111 43

% Isolate procedure. Despain Nov 84
% isolate(Position, Exp, Ans).

consult(isolax),
reconsult(tidy),

* reconsult(display).

% Test.
ti :-reconsult(isolate..test),!,nl, t(3),fail ;true.

isolate([1IT, L = R, A) iso(T, L = R, A).
isoiate(121T1, L =R, A) iso(T, R = L, A).

%iso(U,V,X) :-write(U),write(' '),write(V),write(' '),write(X),ni,fail.
% this is for testing...

iso([j, X, X).
iso(IHITI, FX = W, Ans) :!

isolax(H,FX = W, RHS, Condition),
Condition,
tidy(RHS, New),!,
iso(T, New, Ans).

% Msc functions

arbint(nO).
even(N) :- integer(N), 0 is N mod 2.
odd(N) integer(N), 1 is N mod 2.

Radical Computing Ml 44

% Isolate procedure testing. Despain Nov 84

t(l) :-Exp = (-sin(x) =y)
isolate(I1I, Exp, Ans),
display(Exp, Ans).

t(2) :-Exp = (sin(a)+ x-z),
isolate(121, Exp, Ans),
display(Exp, Ans).

t(3) :-Exp = (log(e,x'2-1)=3),
isolate([1,2, 1, 11, Exp, Ans),
display(Exp, Ans).

t(4) :-Exp = (x*3+ y=z),
isolate(I1,11, Exp, Ans),
display(Exp, Ans).

t(5) :-Exp = (x^3=z),
isolatefllj, Exp, Ans),
display(Exp, Ans).

t(6) :- Exp = (x ̂ 4+ y=z),
isolate(11,1I, Exp, Ans),
display(Exp, Ans).

t(7) :-Exp -((a+ x0^)*y =z),
isolate([1,2,11, Exp, Ans),
display(Exp, Ans).

t(8) Exp = (xy=z),
isolate(III, Exp, Ans),
display(Exp, Ans).

* Radical Computing MI 45

%Solve Procedure Despain Nov 84
reconsult(tidy), reconsult(isolate), reconsultosingleocc),
reconsult(no..occur), reconsult(position),
reconsult(collect), reconsult(attract), reconsult(closeness).

% Solve procedure testing. Despain Nov 84
ts reconsult(display), reconsult(solve-tests),.-

ni, t(N, Exp),
write('CASE: '), write(N),nl, solve(Exp, x, Ans),
display(Exp, Ans), fail.

% Main solve procedure.

solve(L = R, X, Ans)
singleocc(X, L =R),!,

position(X, L =R, P),!,
isolate(P, L =R, Ans).

* solve(Eqn, X, Ans)
collect(X, Eqn, New),!,
solve(New, X, Ans).

solve(Eqn, X, Ans)
attract(X, Eqn, New),
closeness(X, Eqn, EC),
closenessiX, New, NC),
EC > NCQ!

solve(New, X, Ans).
% Solve procedure testing. Despain Nov 84

consult(tidy), consult(isolate), consult(solve),
consult(singleocc), consult(no..occur), consult(position),
consult(display). -

t ni, t(N, Exp), write('CASE:),write(N),nl, solve(Exp, x, Ans),
display(Exp, Ans), fail.

t(1,(-sin(x) =y)).

t(2,(sin(a)+ x=z)).
t(3,(sin(a)+ x=z)).
t(4,(x*3+ y=z)).
t(5,(x'3=z)).
t(6,(x^4+ y=z)).
t(7,((a+ x^6)*y=z)).

KU,(^=Z)

Radical Computing 111 46

% Singleocc procedure

singleocc(X,jHITI) :- singleocc(X, H),!,
no occurence(X, T).

singleocc(X,(HITI) no...ccurence(X, H),!, A1

sinleoc(XX).singleocc(X, T).

singleocc(X,Exp) :- Exp =.. [Op, YITI,
singleocc(X, Y),
no -occurence(X, T).

singleocc(X,Exp) :-Exp =.. [Op, YITI, .
singleocc(X, T),

noocecurence(X, Y).

* % Test of singleocc procedure

t :-reconsult(singleocc), reconsult(no..occur),tt.

tt singleocc(x, [g(y,a+ b,le,x,dJ),cJ).
tf :-singleocc(x, g(y,a+ b,x),x).
tn singleocc(x, g(y,a+ b,z),c).

singleocc(X,[HIT]) :- singleocc(X, H),!,
no-occurence(X, T).

singleocc(X, [H[TJ) :- no...occurence(X, H),!,
singleocc(X, T).

singleocc(X,X).
singleocc(X,Exp) :-Exp =.. 10p, YITI,

singleocc(X, Y),
no occurence(T, Y).

singleocc(XExp) :-Exp =.. j~p, YITI,
singleocc(X, T),
no-occurence(X, Y).

% no...ccurence procedure
no.-pccu ren ce(X, [I).
no occurence(X,H) :-atomnic(H), X ==H.

no-.occurence(X,IHIT]) :-no-occurence(X, H),!,
no_occurence(X, T).

no..pocurence(X,Exp) :-Exp =.. [Op, Y[TJ,
no-occurence(X, Y),!,
no_occurence(X, T).

K

Radical Computing Mi 47

% Position procedure. Despain, July 1984.

% Singleocc procedure must proceed this, as it will wrongly report if
% there is no occurance of X.

% Position(Symbol, Expression, Index).

position (X,I I)-
position(X, IXI,[11).
position(X, [XITI, Il) :-no...occurence(X, T).
position(XI[HIT],[11QI) no-occurence(X, T), position(X,H,Q).
position(X, [HI TJ ,PIQI) no -occurence(X, H), positiou(X,T,ISIQI),

p is s+ 1.

position(X,X,(11J).
% position(X,X,4J). THIS ORIGINAL DEFINITION SEEMS WRONG

position(X,Exp,Pos) :-Exp =. OpIListI,
Op =

position(X,List,Pos).
% Test of Position procedure. Despain, July 1984.

nox(Exp) no-occurence(x,Exp).
po(Exp) :-position(x ,Exp,N),print(N).

t :-reconsult(no..occur), reconsult(position), reconsult(display),!,
nI, t(N, Exp), write('CASE: '), write(N),nl,position(Exp,Ans),
display(Exp, Ans), fail.

position(Exp, Ans) position(x, Exp, Ans),!.

t(false,[x,Ia,IxII ,cI).

t(true,[y,Ia,xjJ,cI).

t(1,(-sin(x) =y)).

t(2,(sin(a)+ x=z)).

t(3,(sin(a)+ x=z)).

t(4,(x*3+ y=z)).

* t(5,(x'3=z)).

t(6,(x^4+y=z)).

.4-..t(7,((a+ x^6)*y=z)).

L t(none, Iy,[a,[wJI,cI) :-write('Note the false answer here'),ni...--...

m4
* ~%4V

"" N'

-. 4Radical Computing Mf 48

display(Exp, Ans)
print(' Input Expression is :),print(Exp),ni,
print(' The Solution is :',print(Ans),nl,nl.

% Test Equations for testing PRESS procedures. Despain August 84

% Test expressions: t(Name, Expression).

t(O,(x+ x=a-b)).
t(1,(-sin(x) = y)).
t(2,(cos(a)+ x=z)).

- .~.t(3,(Iogfe,x 2-1)=3)).
t(4,(x*3+ y=z)).
t(5,(x^3=z)).

"4' t(6,(x^4+ y=z)).I
t(7,((a+ x'6)*y=z)).
t(8,(x y=z)).

% Tests of Bundy and Welhamn.
t(9, (log(e,(x+ l)*(x-l))=3)).
t(1O, (log(e,x+ 1)+ log(e,x-1)=3)).
t(ii, (2'(x'2)^(x3)=2)).
t(12, ((2-(cos(x)-2)*2 (sin(x) 2)) cos(x) =2^(1/4))).

% Collect procedure Nov 84

*% Warning, dont try to backtrack through this procedure.

reconsult(tidy),
* reconsult(contains),

reconsult(match),
reconsult(collax),
reconsult(least..dom),
reconsult(no -occur),
reconsult(display).

tc :- reconsult(collect_..tests), al,
t(N, Exp),
write('CASE:')
write(N),ni,
write('Input:')
write(Exp),nl,
collectx(x, Exp, Ans),
display(Exp, Ans), fail.

tell 0-t11,E3), collect(x,E,A), ni,display(E,A),nl.
tc3 0- t(E), collect(x,E,A), nl,display(E,A),nl.

collectx(X, Old, New) :- collect(X, Old, New),L!

collect(X, Old, New):
contains(X, Old),
leaat~dom(X, Old),
collax(U, LHS, RHS),
match(Old, LHS),

...................................-*L

Radical Computing MI 40

* contains(X, U),
tidy(RHS, New).

collect(X, Old, New):

contains(X, Old),I
collect(X, AH, NH),
New =..10p, NHJATJ)
collect(X, AT, NT),
New =..Op, AHINTI))

(AH =.[.Op, HI(T311, % This solves the problem created by the
T =.. 1Op,T3IATI, % fact that expressions are scanned

(collect(X, T, NT), % backward when Op's are the same.
New =..[Op, H,NTj) % Ex: x*2*x*x is collected..

New =..[Op, NHITI).

(AT =..Op, HiITII, % It is not clear that this case ever
% H =. Op, AHIHi!, % occurs, so it may be useless work.
% (collect(X, H, NH),
% New =..[Op, NHITlI)
% (collect(X, T1, NT),
%New =..IOp, HINT]))

-IV

Radical Computing M s0

% Test of collect procedure. Despain August 84
tc t(O,E), collect(x,E,A), nl,write(A),ni.

t :-reconsult(collect), reconsult(tidy),
reconsult(contains), reconsult(match), reconsulIt(collax),
reconsult(leas..dom),

% reconsult(test...eqns),
reconsult(display),!,
ni, t(N, Exp), write('CASE: '), write(N),nl, collectx(x, Exp, Ans),
display(Exp, Ans), fail.

collectx (X, Old, New) :- collect(X, Old, New), !.

% Test Equations for testing Collect procedure. Despain August 84

% Test expressions: t(Name, Expression).
t(O,(x+ x-a-b)).
t(1,(-sin(x) = x)). 7

% Tests of Bundy and Welhain.
t(1O, (log(e,x+ 1)+ log(e,x-1)=3)).
t(9, (log(e,(x+ 1)*(x-l))=3)).
t(l1, (2^(x2)'(x-3)=2)).
t(12, ((2^(cos(x) 2)*2 ('.in(x)" 2)) cos(x) 2'V(1/4))).

% Collect axioms.

% special collect axiom...
collax(X, X^X0 1, X = 1).
collax(X, X^XN =1, (X = 0; X =1)).

collax(X, X - X, 0).6iA
collax(X, X + X, 2*X).

collax(X, X * X, X^2).
collax(X, X+ W*X, X*(i+ W)). ,

colX. U+ X.V, Xi'(U+ V)).

collax(X, X*X^V, X^(1+V)).
a.collax(X, X U*XV, X (U+ V)).

collax(X, U^X*V^X, (U*V)^X).
collax(X, (X+ U)*(X-U), X'^2-U^2).

bO.
collax(X, log(X,U)+ log(X,V), log(X,U*V)).
collax(X, log(X,U)+ log(X,V), log(X,U*V)) :40O.
collax(X, log(X,U)-log(X,V), log(X,U*V'(-1))).
collax(X, log(U,X)+ log(V,X), log(E,X)*(Iog(U,E)+ log(V,E))).

collax(X, :in(X)^2+cos(X)^2,I).

collax(X, sin(X)*cos(X),sin(2*X)*2^(.1)).

4Radical ComputLig M 51

% Least..dominate procedure.

least-dorn(X, X^Y =1):-!. %Special case for x'xN=1 etc....

Exp =. .[Op,HITI,
contains(X, H),
contains(X, T). ,1r% Contains procedure. contains(X, Exp).

contains(X, X).
contains(X, Exp)

Exp == !J
Exp =..Ip,HITI,
(contains(X, H);
contains(X, T)).

% Match procedure.

match(A, A).
match(A = B, X = Y) :- crossmatch(A, B, X, Y).
match(A * B, X * Y) :-crossmatch(A, B, X, Y).
match(A + B, X + Y) :-crossmatch(A, B, X, Y).
matcb(A - B, (-Y) + X) -crossmatch(A, B, X, Y),!.
match((-A) + B, Y - (X)) :-crossmatch(A, B, X, Y),!.
match(U, V)

IDI
U =..IOp,HITI,
V ==(fill
V =..[Op,FILj,
match(H, F),
match(T, L).

match(U'1, U).2ac (, ^)
crossmatch(A, B, X, Y):

((match(A, X),
match(B, Y));

(match(A, Y),
match(B, X))).

%%

Radical Computing MI 52

% Attract procedured

* reconsu lt(attrax),
reconsult(Ieast-dom),
reconsult(match),
reconsult(contains),L
reconsult(closeness),
reconsult(tidy),
reconsult(display).

% Test of attract procedure
ta :-reconsult(attract.tests),

ni, t(N, Exp),-
write(CCASE:')

attractx(x, Exp, Ans),
display(Exp, Ans),fail.

ta22 :- t(22, Exp),attract(x, Exp, Ans),
ni,write('ta22 Input: '), write(Exp),nl,
nl,write('t22 Output: '), write(Ans),nl.

t(2A2((L)(^))2xO)

ta2l :- t(21, Exp),attract(x, Exp, X),ol~wite(ta~lInpt: ', wrte(Xni
nl,write('ta21 Input: '), write(X),n,

t(2 ,wrte(ta2)^ Output '), rt(Xl

ta23 :- t(23, Exp),attract(x, Exp, X),I
nl,write('ta2l Input: '), write(X),nl,
nl,write('ta2l Output: '), write(X),nl. :s

t(23, (x*2*x*x=2)).

attractx(X, Old, New) :-attract(X, Old, New), write('X :),write(New),nl, L

attract(X, Old, New)
least dom(X, Old),
attrax(Ulist, LHS, RHS),
match(Old, LHS), *
checklist..contains(X, Ulist),

% closeness(X, LHS, Sold),
% closeness(X, RHS, Sinew),
% Snew <Sold ,

tidy(RHS,New).

- - attract(X, Old, New)
Old = J

.4'. ~Old - ii
Old -.. [Op,HITI,

J. V41%

%'
% UM

Radical Computing Mi 53

((attract(X, H, NH),
New =. .[Op,NHITI);
(attract(X, T, NT),
New =..IOp,HINTI)).

attract(X, L = R , New)4 least domn(X, Old),
attrasUlist, L = R, RHS),
Match(Old, LHS),
checklist contains(X, Ulist),!,
tidy(RHS,New).

attras(jU,V],U-V= 1, U =1).

%checklist -contains(X, [HITI): contains(X,H).
%checklist.S.ontains(X, [HIT]) :- check list-con tains(X, T).

checklist contains(X, [HI) :- contains(X,H).
checklist -contains(X, [HIT]) :-contains(X,H), checkiist.-contains(X, T).
% Closeness procedure.
tcl reconsult(least...domn),

reconsult(contains),
closenessqx,a+ x=b*(c+ x),M),
ni, write(M),nl.

closeness(X, E, V) close(X, E, V),!.
close(X, X, 0).

close(X, Exp, M)

least..domn(X, Exp),I
tree..size(X, Exp, ., 0, M),!.

close(X, Exp, M):

Exp =..Op,HITI,
((contains(X, H), close(X, H, M));
(contains(X, T), close(X, T, M))).

tree...size(X, I ,0, Size -n, Sizejin) :
tree...ize(X, jJ,0, Sizejn, Size-in) :!

%tree..size(X, X, 1, Sizeju, Size in) :
tree..,ize(X, X, 1, Sizejn, Size...ut) :- Size .out is Size..n + 1j!.
treesfize(X, Y, 0, Sizejon, Sizejn) :- atomnic(Y),!.
tree..pize(X, Exp, HX, Sizeju, Size....ut)

Exp =

Exp =.[Op,HITI,
tree.p.ize(X, H, FX, Sizeju, S),
tree...ize(X, T, GX, S, S2),
or(FX, GX, HX),

((Op = '.,) ->
(Size-p..ut is S2);
(Size-..out is 52 + HX)).

-. A

4- IN 4%S.

Radical Computing M 54

or(O,O,O).

''A

Radical Computing m1 6,

% Fundamental axioms. Suggested by Rothaus. Despain, July 84.

% Addition axioms I_
axiom(A+ B,B+ A). % Commutation
axiom(A+ (B+ C),(A+ B)+ C). % Distribution
axiom(A+ 0,A). % Existence of Zero
axiom(A+ (-A),O). % Existence of Negative

% Multiplication axioms
axiom(A*B,B*A). % Commutation
axiom(A*(B*C),(A*B)*C). % Distribution
axiom(A*1,A). % Existence of One
axiom(A*A^(-l),l) :-A ==O. % Existence of Inverse .
axiom(A'(-l),I/A). % Definition

'-* % Distribution
axiom(A*B+ A*C,A*(B+ C)). % Add/Mult Distribution

% Exponention
axiom(A X*B^X,(A*B)'X). % Distribution
axiom(A^X*A^Y,A^(X+ Y)). % Distribution
axiom(AI,A). % Existence
axiom(OO,1). % Definition
axiom(log(e^X),X). % Existence of Inverse
axiom(root(X,A'X),A). % Existence of Inverse
axiom(root(2,X),sqrt(X)). % Definition

% Trig
axiom(sin(O),O). % Definition
axiom(sin(pi),O). % Definition
axiom(cos(O), 1). % Definition
axiom(cos(pi),-). % Definition
axiom(sin(A) 2+ cos(A)^ 2,1). % Definition
axiom(sin(A)*cos(A) (-1),tan(A)). % Definition
axiom(sec(A) (-1),sin(A)). % Definition
axiom(cosec(A)^(-1),coes(A)). % Definition
axiom(cotan(A) (-1),tan(A)). % Definition

axiom(arcsin(sin(A)),A). % Existence of Inverse
axiom(arccos(cos(A)),A). % Existence of Inverse
axiom(arccosec(cosec(A)),A). % Existence of Inverse
axiom(arctan(tan(A)),A). % Existence of Inverse
axiom(arcsec(sec(A)),A). % Existence of Inverse
axiom(arccot(cot(A)),A). % Existence of Inverse

'i . %I :::i*.*. ,.,' .,. ,:._.. .. , .,. ,.., ,, . , . .. ,,, .. ,, . .. ,,.,., .,. .,, , .. .,. ,. .. .,,., , ,, .,

- 4*~ SV C~U~ W* S tW1* W ' ~~t~*&9 i=~2C~t~q.-U.J*~.:~%X.~I~J % Lrr~~-~'Uw W'. - - - - - - - - - - - -

Radical Computing MI 5S

% This procedure partially compiles axioms at the Ith level

la :- listing(ax).

p..ax(N) :- M is N+ 1,
ax(N,Exp,Res),
asserta((ax(M,Exp,Res))), fail.

p...Ax(N) :-demolish((ax(N,Exp,Res) :- Body)).
p...Ax(N) :-listing(ax).

demolish (Clause) :- retract(Clause),demolish(Clause).

ax(O,Exp,R es) :-axiom(Exp,Res), improved(Exp,Res).
- - ax(O,Exp,Res) :-axiom(Res,Exp), improved(Exp,Res).

ax(N,Exp,Res) :- M is N-l,M>O,
lemma(Exp,Nex),
ax(M,Nex,Res) ,

* improved(Exp,Res),
Exp == Res, % Put in to fix a bug. Occur check?
not(axm(M,Exp,Res)).

axm(M,Exp,Res) :- ax(M,Exp,Res).
axm(M,Exp,Res) :- N is M-1, N>O, axm(N,Exp,Res).

%-Cost of expression evaluator.
cost(X,O) atomic(X),!.
cost(X,O) :-var(X),!.

cost(Exp, Cost) :- Exp =.. jOplArgs], cst(Op,C1),
list-cost(Args,C2), Cost is CI + 02,!.

list-cost(IHITI, Cost) :-cost(H,Cl1), list...cost(T, 02), Cost is CI + C2.

cst(=,) L-
cst(+,) :-!.

cst(..0).

%lemma(Exp,Res) :- axiom(Res, Exp).
lemma(Exp,Res) :- Exp == Res, %Put in to fix a bug. Occur check?

axiom(Nex, Exp),
Nex in.. [OpIArgs],
listaxioms(Args,Nargs),
Res -.. IOpINarssI.

%list.axioms(HT,NH NT) :- H -- NH, % Put in to fix a bug. Occur check?
axiom(H,NH),

- .- **

-~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~z W-. W. , - 7-. - - - ~ '67-A- .- .Xr~. r~rv '~ - -

Radical Computing M H-

list, axioms(T,NT).

improved(Exp,Res) :- cost(Exp,C1),
cost(Res,C2),
CI>C2,!.

axiom(A,A).

% Addition axioms
axiom(A+ B,B+ A). % Commutation
axiom(A+ (B+ C),(A+ B)+ C). % Distribution
axiom(A+ 0,A). % Existence of Zero
axiom(A+ (-A),O). % Existence of Negative

% Multiplication axioms
axiom(A*B,B*A). % Commutation
axiom(A*(B*C),(A*B)*C). % Distribution
axiom(A*l,A). % Existence of One
axiom(A*A^(-l),l) :- A ==O. % Existence of Inverse•axiom(A^(-1),l/A). % Defiaition

% Distribution
axiom(A*B+ A*C,A*(B+ C)). % Add/Mult Distribution

% Exponention
axiom(A^X*B^X,(A*B)'X). % Distribution
axiom(A^X*A^Y,A^(X+ Y)). % Distribution
axiom(AI,A). % Existence
axiom(00,1). % Definition

-"

-.4, -

C.

t :. ~ ~ ~ ~ ~ ~~~~~~~~~- ,...-... .. ,,-.,.-...,..,.....-............. , - :...:-----'.:......-................ . .

S S~ fl'
4

r. n.41tflM r til *T- t~ - ,-u. -. ~ .j~ 'b - - - - - tx.- ; -, - - - .- -. -

DISTRIBUTION LIST

Mr. Saul Amarel
Director CAPT Craig E. Dorman
DARPA/IPTO Department of the Navy, OP-095T
1400 Wilson Blvd. The Pentagon, Room 5D576
Arlington, VA 22209 Washington, D.C. 20350

Dr. Mary Atkins CDR Timothy Dugan [2]
Deputy Director, Science & Tech. NFOIO Detachment, Suitland
Defense Nuclear Agency 4301 Suitland Road
Washington, D.C. 20305 Washington, D.C. 20390

National Security Agency [2] Mr. John Entzminger
Attn R5: Dr. N. Addison Ball Director
Ft. George G. Meade, MD 20755 DARPA/TTO

1400 Wilson Blvd.

Dr. Charles Buffalano Arlington, VA 22209
DARPA
Acting Director Dr. J. Richard Fisher

1400 Wilson Boulevard Assistant BMD Program Manager
Arlington, VA 22209 U.S. Army

Strategic Defense Command
Dr. Curtis G. Callan, Jr. P. 0. Box 15280
Department of Physics Arlington, VA 22215-0150
Princeton University
Box 708 Mr. Robert Foord [2]
Princeton, NJ 08544 P.O. Box 1925

Washington, D.C. 20505
Mr. John Darrah
Sr. Scientist and Technical Director [2]
Advisor National Security Agency
HQ Space Cmd/XPN Fort Meade, MD 20755
Peterson AFB, CO 80914 ATTN: Mr. Richard Foss, A05

Dr. Roger F. Dashen Mr. Bert Fowler
Institute for Advanced Study Senior Vice President
Princeton, NJ 08540 The MITRE Corporation

P.O. Box 208
Defense Technical Information [2] Bedford, MA 01730

Center
Cameron Station Dr. Larry Gershwin
Alexandria, VA 22314 NIO for Strategic Programs

P.O. Box 1925
Dr. Alvin M. Despain Washington, D.C. 20505
1192 Grizzly Peak BoulevardBerkeley, CA 94708

,% -.

ip-i

*, '° , - , , - - , . . ,- -..,- . , , - " - a ..- - .

r,,
4, r..p .4* , .. "

4
. . " ."-'. "" 4. . -- :.. ..-. ..- ".. . J."-.. . . . 2 ,..

DISTRIBUTION LIST (Cont'd.)

Dr. S. William Gouse, W300 Mr. Ed Key
Vice President and General Vice President

Manager The MITRE Corporation
The MITRE Corporation P.O. Box 208
1820 Dolley Madison Blvd. Bedford, MA 01730
McLean, VA 22102

Dr. George A. Keyworth
Dr. William Happer Director
559 Riverside Drive Office of Science & Tech. Policy
Princeton, NJ 08540 Old Executive Office Building

17th & Pennsylvania, N.W.
Dr. Edward Harper [2] Washington, D.C. 20500
SSBN, Security Director
OP-021T MAJ GEN Donald L. Lamberson
The Pentagon, Room 4D534 Assistant Deputy Chief of Staff
Washington, D.C. 20350 (RD&A) HQ USAF/RD

Washington, D.C. 20330
Dr. Donald A. Hicks [2]
Under Secretary of Defense (R&E) Dr. Donald M. LeVine, W385 [3]
Designee The MITRE Corporation
Office of the Secretary of 1820 Dolley Madison Blvd.

Defense McLean, VA 22102
The Pentagon, Room 3E1 006
Washington, D.C. 20301 Mr. John McMahon

Dep. Dir. Cen. Intelligence
Mr. R. Evan Hineman P.O. Box 1925
Deputy Director for Science Washington, D.C. 20505
& Technology

P.O. Box 1925 Mr. Charles Mandelbaum
Washington, D.C 20505 Mail Stop ER-32/G-226 GTN

U.S. Department of Energy
Mr. Ben Hunter [2] Washington, D.C. 20545
1917 Westmoreland Street
McLean, VA 22101 Dr. Marvin Moss [2]

Technical Director
The MITRE Corporation [25] Office of Naval Research
1820 Dolley Madison Blvd. 800 N. Quincy Street
McLean, VA 22102 Arlington, VA 22217
ATTN: JASON Library, W002

Dr. Julian Nall [2]
Dr. Sherman Karp [3] P.O. Box 1925
DARPA/STO Washington, D.C. 20505
1400 Wilson Boulevard
Arlington, VA 22209

.- o

D-2

I ,L'-O'

.....,:.... ,-.....--..:--
. , ..,aa, t9. % ,, -+.e .=, : . . .v :-,:-..-...--,.,-..-. . .-. ?..-,;.-.. --.,. ,-.,:

.: 7-w 7- 7- 77 7 .7 -: -7

DISTRIBUTION LIST (Cont'd.)

Director Dr. Oscar S. Rothaus
National Security Agency 106 Devon Road
Fort Meade, MD 20755 Ithaca, NY 14850
ATTN: Mr. Edward P. Neuburg

DDR-FANX 3 Dr. Phil Selwyn [2]
Technical Director

Prof. William A. Nierenberg Office of Naval Technology
Scripps Institution of 800 N. Quincy Street

Oceanography Arlington, VA 22217
University of California, S.D.
La Jolla, CA 92093 Dr. Eugene Sevin [2]

Defense Nuclear Agency
Dr. Robert Norwood [2] 6801 Telegraph Road
Office of the Assistant Secretary Room 244

of the Army Alexandria, VA 22310
(Research Development
& Acquisition) Mr. Shen Shey

The Pentagon Special Assistant for
Room 2E673 Directed Energy
Washington, D.C. 20310-0103 DARPA

1400 Wilson Blvd.

The MITRE Corporation Arlington, VA 22209
Records Resources
Mail Stop W971 Dr. Joel A. Snow [2]
McLean, VA 22102 Senior Technical Advisor

Office of Energy Research

Mr. Richard Reynolds U.S. DOE, M.S. E084
Director Washington, D.C. 20585
DARPA/DSO
1400 Wilson Blvd. COMO William Studeman
Arlington, VA 22209 Director of Naval Intelligence

Office of Naval Intelligence
Mr. Alan J. Roberts Navy Department
Vice President & General Manager Washington, D.C. 20350
Washington C3, Operations
The MITRE Corporation Mr. Alexander J. Tachmindji
1820 Dolley Madison Boulevard Senior Vice President & General
McLean, VA 22102 Manager

The MITRE Corporation
Los Alamos Scientific Laboratory P.O. Box 208 1%
ATTN: C. Paul Robinson Bedford, MA 01730

-. P.O. Box 1000
Los Alamos, NM 87545

* D-3

.,
\"'1 .

DISTRIBUTION LIST (Concl'd.)

Dr. Vigdor Teplitz
ACDA
320 21st Street, N.W.
Room 4484
Washington, D.C. 20451

Mr. Tony Tether
Director
DARPA/STO
1400 Wilson Blvd.

*' Arlington, VA 22209

Dr. Al Trivelpiece
Director, Office of Energy

Research, U.S. DOE
M.S. 6E084
Washington, D.C. 20585

LTCOL Simon Peter Worden
Strategic Defense Initiative

Organization
1717 H. Street
Room 416
Washington, D.C. 20301

Dr. Gerold Yonas [23

Office of the Secretary of

Defense
Strategic Defense Initiatives
The Pentagon
Washington, DC 20301-7100

Mr. Leo Young
OUSDRE (R&AT)
The Pentagon, Room 3D1067
Washington, D.C. 20301

Mr. Charles A. Zraket
Executive Vice President
The MITRE Corporation
P.O. Box 208 j
Bedford, MA 01730

D-4

, , ' ." % ''r '. .' ,. ' ' 'V .' .. ,' .. ' ., ., ', % '. , '.", .. , .''. '..'."j l- --, ,1" '."-V- ', , %% V, .''-' ."- -'

FILMED

12-85

DTIC
-. -. ~ . -. .

-' . "- " ", - * . 9.... .. *'.-. T-? L

